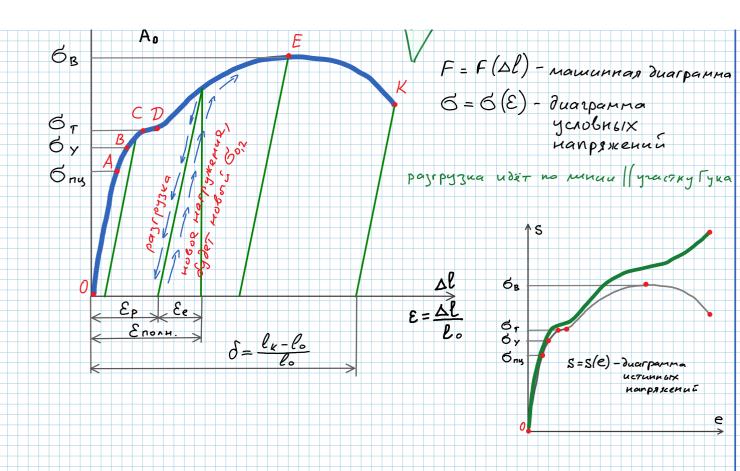

2.10. Механические испытания материалов. Характеристики прочности. Расчеты на прочность при простейших деформациях


2.10.1. Механические испытания материалов

Поведение Конструкционных материалов изд нагрузкой мошно изучить лишь экспериментальным мутём. При этом определяются важные карактеристики материала, которые используются затем ири расчётах на прочность. Основной вид статических испытаний -испытания на растяжение.

Подробнее с испытаниями материалов можно ознакомиться в [16]: **Механические испытания материалов : учеб. пособие** / Жуков А.Е., Кипарисов А.Г., Миронов А. А., и др.; Нижегор. гос. техн. ун-т. - Н. Новгород : НГТУ, 2014. - 86 с. ISBN 978-5-502-00522-7.
Предыдущее издание данной книги можно скачать здесь: https://sopro.nnewer.ru/sopro/uchebnye materialy po soprotivleniyu materialov.html

Образец из пластичного металла (конструкционной малоуплеродистой стали) растя гиваем в испытательной машине. При этом строится т.н. машиная диаграмма растяжения - дались процесса в виде функции F=F(Dl)

Важные точки и участки на дистранне б=б(Е):

ОА - участок Гука (пропоручена миности, линейной упручести)

Gny- npeder uponopywonarenocty - 270.

AB - участых нелинейной упругости. При нагрушений до Т. В остаточных деформаций нет

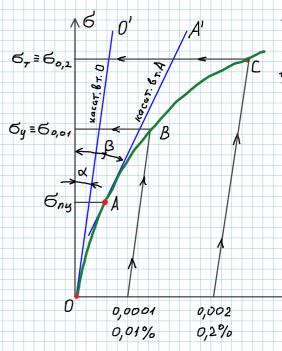
Gy - npeden ynpyrocty - 200...

ВС - участок упруго-пластических деформаций

бт - предел текучести. По ГОСТ используем бо,2

CD - площадка текучест

DE - упасток Уупрочнения. Если здесь разгрузить образан, новое нагругиение пойдет по правктории разгрузки — во, г будет выше. Это явление называется "наклёп".


 $G_B = \frac{F_{max}}{A_o}$ - предел прочности (тикже называют временное сопротивление) - A_o это максимальная нагрузка (напряжение), которую выдерживает образец (материал)

ЕК - участок формирования шейки

Do т. Е образец сохрапяет цилипдрическую форму. После Г.Ев иём образуется местное утонение - шейка, в котором образец в конце концов разрывается

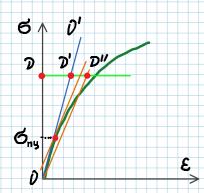
К - точки разрыва образца

Не для всех материалов мошно по диаграмие однози определить характеристики

Пример. Графии нелинейный 2 De 1) Gny, 2) Gy, 3) GT?

1) CTPOUM KOCGT. BT. D, Ld CTPOUM LUNUAD NOT LB (4A1) ордината точки касаная

Unu (70 Ke camae)
1- CTPOUM KACAT! OU'
2- MPOBUDUM OTPOSOK DD'
3 - CTPOUM D'D" = DD'
4- (TPOUM 12)"


OPDUHATA TOUKU KACAHUS 4- CTPONM OD" 2

AA'U DUALPAMMU 5- CTPOUM KACAT K DUIP,

BUCT BENUSUMY BAY - YCAOBHOTH APEREN APONTON - TH

z) npu E=0,01% > Go,0,=Gy - yor npedea yaryoom

3) Apu E=0,2% -> Go,2 = GT - yes upeden Texyrecon

Характеристики прочности

Характеристики пластичности

$$S = \frac{l\kappa - l_0}{l_0}$$
. 100% - οτμοκιστελώνος γδλυμενώς πρυ ραγρώβε $\delta < 5\%$ - χργηκώς ματερώαλ, $\delta > 5\%$ - πλακτώμιδ

$$\Psi = \frac{A_o - A_k}{A_o}$$
. 100% — относимельное сумение при разрыве

Предельные напряжения

6, - для пластичного материала, Т.К. большия деф-и недопустимы GB - для хрупкого материала

Допускаемые напряжения

Нельзя допускать возпикновения предельных напрятений в конструкции. Поэтому вводится попятие допускаемых напряжений - это наибольшие напрямения, при которых обеспечивается прочности и долговечность конструкции.

$$[G] = \frac{Gnped}{n}$$
, the $n > 1 - \kappao > ppuyuent$ ganaca npounoctu $\frac{\partial}{\partial x} = \frac{G}{n}$, $\frac{\partial}{\partial x} = \frac{G}{n} = \frac{G}{n}$, $\frac{\partial}{\partial x} = \frac{G}{n} =$

COUTC. DAS NABCT. M-AOB [G]_T =
$$\frac{G_{T}}{N_{T}}$$
; $N_{T} = 1, 4 \div 1, 6$ (1,25 ÷ 2,0)
DAS XPYN. M-AOB [G]_B = $\frac{G_{B}}{N_{B}}$; $N_{B} = 2,5 \div 3,0$ (2,4 ÷ 5,0)

KOJP-T zanaca η d.δ. min c τ. zp. Эκονομανησετα, μο достаточным c τ.zp. προυνοςτα, καθέχμοςτα, дольвечности. Чем меньше мы знаен о материале, условиях работы констр-и, тем выше д.б. к-т запаса.

Monto betpernis obostare Das Don. Hanp-in Gadm - or ann. admissible (allowable)

[7] -?

Испытания на кручение, как правило, не проводят. Допускаемые касательные напряшения рассчитывают след. образом:

Nodpobnee o K-ταχ zanaca - β kypce "Detanu macuum", a τακ me β στρασλεβωίχ κορπαχ α σταπδαρταχ: CHUΠ, ΠΗΑЭ, PPP, PMPC, Γος!

Итах напряшения в конструкции не долини превониать допускаемих - условие прочности.

700 MOMMO 3anucaro Kak 6max ≤ [6], 2De 6-Anodone Hanp-1 (6.17)

2.10.2. Условия прочности при простейших видах нагружения

Кратко

1) Рост. - статие ОТОС - любод тошка сечения $G_z^{max} \frac{N_z^m}{A} \le [G]$ 2) Круч-е ОТОС - точка на поб-ти кручной вала точка поцертне длингий сторопо (оси) $\frac{1}{2} = \frac{M_z^m}{W_p(x)} \le [T]$ 3) Изгиб ОТОС по норм напр. наиболее удаженноге от ИД точки в статой и раст. частях сеч-я $G_z^{max} = \frac{M_z^m}{W_x} \le [G]$ 1) ОТОС по касат напр-ям для симпетричних отних гори, и верт, осей сечений - середная $G_z^{max} = \frac{M_z^m}{W_x} \le [G]$ 1 точки ме жуд $G_z^{max} = \frac{M_z^m}{W_x} \le [G]$ 1 точки ме жуд $G_z^{max} = \frac{M_z^m}{W_x} \le [G]$ 1 точки ме жуд $G_z^{max} = \frac{M_z^m}{W_x} \le [G]$ 1 наского (ПНС). Оченивать протпост ири неоднородном наского изгления и насучнося изглена (20-4)

1 доского (ПНС). Оченивать протпост ири неоднородном насучнося изглена (20-4)

1 доского (протпост (па осн. эиспер-ти и рас чётов), что если воплолност усл с прочности для т. (1) выполняются усл прочности для т. (1) выполняются усл прочности и для остимьноги точак сеч-я.

1 т. д. рас чётог та прочност при изглав воплолняют по $G_z^{max} = G_z^{max}$

Испове условий (20-1)— (20-3) мошло решать 3 типа задач.
Условия 6 обизем выде: напре = Напрузка € доп. капре

OTCIODA

1741 - Eyenka upourocti, T.e. upobepka bonornerus neprobenció (20-1) (20-3)

2 Tun - ouped-e Jezoneschoù warpyzen.

нагрузка < (хар-ка сеч-л) - (доп. нипр-е)

3 TUN - OUPED-E P-Pa NUMP. CEY-9 MG CTEDULY MPOEKTAP-9.

Хар-ки ши-я > нагругия — доп. напр-е